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Abstract. A variational principle for finite isothermal deformations of anisotropic compressible and nearly incom-
pressible hyperelastic materials is presented. It is equivalent to the nonlinear elastic field (Lagrangian) equations
expressed in terms of the displacement field and a scalar function associated with the hydrostatic mean stress. The
formulation for incompressible materials is recovered from the compressible one simply as a limit. The principle
is particularly useful in the development of finite element analysis of nearly incompressible and of incompressible
materials and is general in the sense that it uses a general form of constitutive equation. It can be considered as
an extension of Key’s principle to nonlinear elasticity. Various numerical implementations are used to illustrate
the efficiency of the proposed formulation and to show the convergence behaviour for different types of elements.
These numerical tests suggest that the formulation gives results which change smoothly as the material varies from
compressible to incompressible.

Key words: nonlinear elasticity, near incompressibility, variational formulation, finite deformations, finite ele-
ments.

1. Introduction

It is often assumed that rubberlike materials are nearly incompressible materials. The near-
incompressibility of the material can often lead to numerical difficulties [1–3] when a nu-
merical solution, such as the finite element displacement solution, is sought. However, in
the context of linear elasticity a good understanding of this phenomenon has been given by
various authors, seee.g.[1] and [4]. In the past, many finite element models, based on penalty
methods, selective-reduced integration schemes, ‘approximate constraints’, mixed, Lagrange
multiplier, field consistent and orthogonal projection methods for linear and nonlinear (finite)
elasticity have appeared in the literature, see e.g. [5–13], and good results may be obtained
from some of them. A finite element solution for a nearly incompressible problem can also
be obtained from the corresponding perturbed incompressible problem and an example of
such a solution can be found in [14] where the method is based on the work of Spencer
[15]. The boundary element method can also give good results for nearly incompressible and
for incompressible linear problems (see refs. [16], [17]), but its extension to geometrically
nonlinear problems is not straightforward, seee.g. [18]. Here, however, we concentrate on
developing a mixed finite element method for nonlinear anisotropic elastic materials. Mixed
methods, in the linear case, can overcome the locking problem for Poisson ratioν equal to or
close to one half, and examples may be found in [2, pp. 9–24]. An advantage of certain mixed
methods, in the context of linear constraints is that they generally yield good approximations
to the ‘pressures’ also; see the comment made by Babuska and Suri [19, p. 440].
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The aim of this paper on the theoretical side is to develop a Lagrangian model, which is
general in the sense that it admits a general form of strain energy function, for both compress-
ible and incompressible materials. This formulation may then be used with commercial finite
element codes (the formulation in this paper uses the pre- and post-processing of the PERFINE
[20] finite element software). Numerous existing forms of the strain energy function belong to
the proposed general form developed here. The work here is an extension of the recent work
of Shariff [10] on isotropic elasticity. However, the proposed formulation (and the approach)
here is different from that of [10] since it is motivated by suitability for future numerical
computation using a modified augmented Lagrangian method, recently developed by Shariff
[21].

On the computational side we indicate, in Section 5, various possible implementations
of element types in the nonlinear model. We discuss the performance of only certain types of
one- and two-dimensional elements. In the case of the two-dimensional element we discuss the
performance of the popular, but unstable, Q1-P0 [2] element and a LBB Q2-Q1 [2, page 34]
stable element on various numerical simulations. Note that the stability properties of the above
two-dimensional elements depend crucially on the linear plane incompressibility constraint.
Other types of elements could be used in the proposed formulation but it is beyond the scope
of this paper to discuss the performances of all types of elements.

On specialising the proposed variational principle to linear (classical) elasticity, Key’s
principle is recovered for anisotropic materials.

2. Compressible hyperelastic materials and the incompressible limit

Following the works of Ogden [22, pp. 508–509], amongst others, we consider the modified
deformation gradient tensorF ∗, defined in terms of the deformation gradientF as follows

F ∗ = J−1/3F , J = detF (1)

so that

detF ∗ = 1. (2)

In this way,F = J 1/3F ∗ is composed of a pure dilationJ 1/3I and an isochoric deformation
F ∗. For an incompressible material,J = 1 for all deformations, so thatF ∗ = F , and in a
solution to a boundary-value problem for such a material we denote the deformation gradient
byF 0, where detF 0 = 1.

The strain energy functionW is treated as a function of the Green strain tensorE =
1
2(F

TF − I), rather than ofF (though the analysis can be simplified by usingF ). Our
reasons for doing so are, firstly, thatE is commonly used in finite element analysis, secondly,
that writingW in terms ofE ensures thatW is objective and, finally that in Section 4 it is
convenient to useE to relate our principle to Key’s principle [23].

In order to facilitate our analysis, we define a modified Green tensor

E∗ = 1
2(F

∗TF ∗ − I ) = J−2/3E + 1
2(IJ

−2/3− I ) (3)

and then express the strain energy function as

W(E) = W ∗(E∗, J ) (4)
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sinceE∗ andJ may be regarded as independent variables. In fact, they each are functions of
F , given by Equations (1) and (3), with the symmetric matrixE∗ satisfying

det(2E∗ + I ) = 1. (5)

The Cauchy stressT and the second Piola–Kirchhoff stress tensorT (2) are given by

T = J−1FT (2)F T , T (2) = ∂W

∂E
= J−2/3

(
∂W ∗

∂E∗
− P ∗C∗

)
, (6)

where

P ∗ = 1
3 tr

(
∂W ∗

∂E∗
(2E∗ + I )

)
− J ∂W

∗

∂J
and C∗(2E∗ + I ) = I . (7)

The derivation of (6) requires an expression for∂E∗/∂E, the Cartesian components of which
are obtained from (3) as

∂E∗ij /∂Ers = J−2/3
(
δirδjs − 1

3(2E
∗
ij + δij )C∗rs

)
(8)

(althoughEsr = Ers , it is preferable in the algebraic manipulations to treatEsr andErs as
independent whenr 6= s). In terms ofW ∗, the hydrostatic part of the stress has the simple
expression

1
3 trT = ∂W ∗

∂J
. (9)

Inspection of (6), (7) and (9) shows that the reference configuration is stress-free if and
only if

∂W ∗

∂J
(0,1) = 0,

∂W ∗

∂E∗
(0,1) = 0, (10, 11)

while there is no loss of generality in taking the strain energy to vanish in the reference
configuration:

W ∗(0,1) = 0. (12)

Moreover, one possible definition for the ground state bulk modulus is (following Ogden [22])

χ = ∂2W ∗

∂J 2
(0,1). (13)

2.1. INCOMPRESSIBLE MATERIALS

An incompressible material hasJ = 1, so that the Green strain tensor denoted byE0 =
1
2(F

T
0F 0− I ) must satisfy

det(2E0+ I) = 1. (14)
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LetW0(E0) denote the strain energy function. The second Piola–Kirchhoff stress is related to
the deformation through

T (2) = ∂W0

∂E0
− P0C0, (15)

whereC0 = (2E0 + I )−1 andP0 is an arbitrary scalar function. IfT 0 denotes the Cauchy
stress then its hydrostatic part is

1
3tr(T 0) = 1

3 tr

(
∂W0

∂E0
(2E0+ I)

)
− P0. (16)

As we shall see in the following, these formulae are recovered from a corresponding com-
pressible material by taking the incompressible limit.

2.2. STRAIN ENERGY FUNCTIONS FOR COMPRESSIBLE MATERIALS AND THE

INCOMPRESSIBLE LIMIT

In the incompressible limit,J is entirely insensitive to the value ofp = 1
3 tr(T ). In an ‘almost

incompressible’ material, the ground-state modulusχ is large compared to all remaining
ground-state moduliµ1,µ2,... (just a single shear modulus in the case of an isotropic material).
In this case, since large pressure changes are necessary for appreciable volume changes to be
produced,J −1 should be regarded as a function ofE∗ and ofηp, whereη = µ/χ � 1, with
µ = (µ2

1 + µ2
2+ · · ·)1/2.

We introduceŴ(E∗, p), a partial Legendre transform [24] ofW ∗(E∗, J ), through

Ŵ (E∗, p) = W ∗(E∗, J )− (J − 1)
∂W ∗

∂J
, p ≡ −∂W

∗

∂J
(E∗, J ). (17)

Since this yieldsW ∗(E∗, J ) = Ŵ(E∗, p)− p(J − 1), identities of the standard form arise

J − 1= ∂Ŵ

∂p
(E∗, p),

∂W ∗

∂E∗
(E∗, J ) = ∂Ŵ

∂E∗
(E∗, p). (18)

While (18)1 is the formal inverse of (17)2, no equivalent of (17)2 exists in the limitη = 0 for
which J ≡ 1. However, for smallη, we expectJ − 1 to depend on shape changes associated
with E∗ and to be approximately linear inηp so having the form

J = 1− ηJ0(E
∗)− ηpJ1(E

∗)+ o(η).

Comparison with (18)1 then motivates the decomposition

Ŵ (E∗, p) = W0(E
∗)− ηpJ0(E

∗)− 1
2ηp

2J1(E
∗)+ ηŴ2(E

∗, q), (19)

whereq ≡ ηp and whereŴ2 is a smooth function ofq for which

Ŵ2(E
∗,0) = 0,

∂Ŵ2

∂q
(E∗,0) = 0. (20)
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This gives

p = 1− J
ηJ1(E

∗)
− J0(E

∗)
J1(E

∗)
+ η

J1(E
∗)
∂Ŵ2

∂q
(E∗, ηp), (21)

which may, in principle, be inverted to expressp in terms of the strain measures(J − 1)/η
andE∗. Insertion ofp intoW ∗ = Ŵ − p∂Ŵ/∂p yieldsW ∗(E∗, J ) in the form

W ∗ = W0(E
∗)+ 1

2ηp
2J1(E

∗)+ ηŴ2(E
∗, q)− ηq ∂Ŵ2

∂q
(E∗, q), (22)

while the corresponding expression for∂W ∗/∂E∗ required in (6) and (7) is

∂W ∗

∂E∗
= ∂Ŵ

∂E∗
= ∂W0

∂E∗
− ηp ∂J0

∂E∗
− 1

2ηp
2 ∂J1

∂E∗
+ η∂Ŵ2

∂E∗
(E∗, q). (23)

The ‘incompressible limit’ corresponds toη→ 0 with p finite, in which case the first term in
(21) is indeterminate, so that the contributionp to P ∗ in (6) and (7) cannot be expressed in
terms ofE∗ andJ − 1. This same limit gives

lim
η→0

∂Ŵ

∂E∗
= ∂W0

∂E∗
(E∗),

taking note thatJ → 1 asη→ 0.
It may be observed that several forms of strain energy function developed previously be-

long to the class corresponding to (19) and (22). For example, Scott [25] uses a strain energy
of the form1

W ∗(E∗, J ) = α(E∗)+ β(E∗)(J − 1)+ 1
2χ(J − 1)2γ (E∗) (24)

in studying the slowness surfaces of elastic materials. This givesp = −β(E∗) − χ (J −
1)γ (E∗) which leads to

Ŵ (E∗, p) = α(E∗)− η

2µ

(p + β(E∗))2
γ (E∗)

. (25)

2.3. SPECIALIZATION TO ISOTROPIC ELASTICITY

For an isotropic hyperelastic solid,W can be expressed as a symmetric function of the prin-
cipal stretchesλi (i = 1,2,3), so that we consider a class of strain energy functionsW ∗
associated withŴ (E∗, p) of the form

Ŵ (E∗, p) = F0(λ
∗
1, λ
∗
2, λ
∗
3)− ηpf0(λ

∗
1, λ
∗
2, λ
∗
3)

−1
2ηp

2f1(λ
∗
1, λ
∗
2, λ
∗
3)+ ηf2(λ

∗
1, λ
∗
2, λ
∗
3, ηp). (26)

1 We note that Scott proposed a slightly more general form of the strain energy function,i.e.W∗(E∗, J ) =
α(E∗)+β(E∗)(J −1)+ 1

2(J −1)2 ϑ(E∗) with the property thatα(E∗) andβ(E∗) are finite but do not become
indefinitely large asϑ(E∗)→∞.
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Here, each ofF0, f0, f1 andf2 is symmetric in the three argumentsλ∗i ≡ J−1/3λi, which must
satisfyλ∗1λ

∗
2 λ
∗
3 = 1 andλ1λ2λ3 = J . Alternatively, we may replace the argumentsλ∗1, λ∗2 and

λ∗3 in (26) by any two quantities symmetric in all three, for example

I ∗1 ≡ λ∗21 + λ∗22 + λ∗23 and I ∗2 ≡ λ∗−2
1 + λ∗−2

2 + λ∗−2
3 . (27)

In either case, we takef2(λ
∗
1, λ∗2, λ∗3, q) to be a function ofq = ηp, having derivatives of O(1).

Some examples ofW ∗ which appear in the literature are given in Appendix B, together
with associated expressions forp.

3. Variational principle

The basic equations of nonlinear elasticity may be summarised as follows. Consider an elastic
body occupying the regionB0 in some stress-free configuration. A point inB0 is identified
by its position vectorX relative to some origin. Under deformation this point moves to a new
positionx(X). The displacement vectoru is given byu = x −X.

The equations of equilibrium are

Div S + ρ0b = 0, X ∈ B0, (28)

S = ∂W/∂D, D = Gradu = F − I ,
whereρ0 is the mass density (per unit undeformed volume), Div and Grad denote the diver-
gence and gradient operators relative toB0, ST is the first Piola–Kirchhoff stress andb, the
body force, is expressible as

b = −grad8, (29)

where8 is a scalar function ofx and grad refers to the gradient operation with respect tox.
Boundary conditions of a fairly general form are considered. Let (g1(X), g2(X), g3(X))

be an orthonormal set of vectors and∂B0 be the boundary ofB0. At each point of∂B0, m
components of displacement are specified (m = 0, 1, 2, 3) through

u.gi = ζi(X), X ∈ ∂B/i0 , (30)

wheregi is the reciprocal (or dual) basis forgi, while exactly 3− m components of traction
are related to the displacement and displacement gradient through

STN .gj = σ j(X,u,D), X ∈ ∂Bj0, (31)

wherei, j can take the values of 1, 2 or 3, with

∂B
/i

0 ∩ ∂Bi0 = ∅, ∂B
/i

0 ∪ ∂Bi0 = ∂B0 (32)

with no summation overi in (32) and withN the unit outward normal to∂B0. The above
boundary conditions have been used ine.g. Refs. [8] and [26]. The use of the theorem of
minimum potential energy (in the context of linear elasticity) in finite element displacement
models generates solutions in which accuracy is adversely affected asν approaches the critical
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value 0·5 [27]. The inaccuracies are associated with the fact that forν = 0·5, the usual dis-
placement formulation is no longer valid [27]. To avoid this difficulty, Key [23], for example,
discretized the infinitesimal hydrostatic mean stress,σii/3 (≡ −p, say) independently of the
displacement field and determined it from the linear volumetric dilatation by the relations (see
Appendix A for the notations below)

ekk = (−3p − Ckkij e∗ij )/3χ. (33)

Within the strain energy function,ekk is replaced by the right hand side of Equation (33)
and relation (33) is also introduced into the functional via a Lagrange multiplier. A similar
principle (but a different method) is applied to nonlinear elasticity. Using−p again to denote
the hydrostatic mean stress tr(T )/3, we have from (18) and (19)

J = 1+ ∂Ŵ
∂p
= 1− ηJ0(E

∗)− ηpJ1(E
∗)+ η2∂Ŵ2

∂q
(E∗, q). (34)

Provided that the right-hand side of (34) is monotonic and continuous inq at eachE∗, Equa-
tion (34) may be inverted uniquely to givep in terms ofE∗ and(J − 1)/η. Then, the strain
energy functionW ∗(E∗, J ) associated to (19) is found through

W ∗ = Ŵ (E∗, p)− (J − 1)p, p = P(E∗, η−1(J − 1)).

Equations (28) and the associated boundary conditions (30) and (31) result from the vanishing
of the first variation of the functional

5(u) =
∫
B0

{W(E)+ ρ08(X + u)−9} dV, (35)

whereu(X) is any displacement field satisfying the essential boundary condition (30), provided
only that the scalar function9 = 9(X,u,D) satisfies Lagrange equations of the form

Div

(
∂9

∂D

)
− ∂9
∂u
= 0, X ∈ B0 (36)

and has boundary values which satisfy(
∂9

∂D

)T
N .gj = σ j(X,u,D), X ∈ ∂Bj0 . (37)

Indeed, vanishing of the first variation of (35) yields

0 = δ5 =
∫
B0

{
tr

(
∂W

∂D
δD

)
− ρ0b.δu− ∂9

∂u
.δu− tr

(
∂9

∂D
δD

)}
dV

=
∫
B0

{
−Div

(
∂W

∂D

)
− ρ0b + Div

(
∂9

∂D

)
− ∂9
∂u

}
.δu dV

+
∫
B0

{
NT ∂W

∂D
−NT ∂9

∂D

}
.δudA.
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This formulation requires identification of a solution9(X,u,D) to (36) in B0 satisfying
the boundary conditions (37) on the three portions of boundary∂B

j

0 over which traction
components are specified as in (31), but requires no restrictions on9 on portions of∂B0

whereδu = 0. In the special case for whichσ j depends onX andu, it is possible to replace
(35) by

5(u) =
∫
B0

{W(E)+ ρ08} dV −
∫
∂Bσ0

ψ dA, (38)

whereψ(X,u) is a scalar function such that

∂ψ

∂u
.gj = σ j(X,u), X ∈ ∂Bj0 (39)

and

∂Bσ0 =
3⋃
j=1

∂B
j

0 .

In Equation (35), the termW(E) may be expressed in terms ofE∗ andJ as

W(E) = W ∗(E∗, J ) = Ŵ (E∗, p)− p∂Ŵ
∂p

, p ≡ −∂W
∗

∂J
(E∗, J ),

whereJ andE∗ are themselves defined in terms ofu through (1) and (3), withF = I +
Gradu. Alternatively, by definingJp(E

∗, p) as the solution to

∂W ∗

∂J
(E∗, Jp) = −p, (40)

while still regardingJ andE∗ as derived fromu, we replace the functional in (35) by one
defined in terms of the independent fieldsu andp as

5∗(u, p) =
∫
B0

{W ∗(E∗, Jp)+ (Jp − J )p + ρ08−9} dV. (41)

This is appropriate whenσ j depends onX, u andD as in (37). Similarly, ifσ j depends only
onX andu, the functional in (38) is re-expressed as

5∗(u, p) =
∫
B0

{W ∗(E∗, Jp)+ (Jp − J )p + ρ08} dV −
∫
∂Bσ0

ψ dA. (42)

Recalling that in (41) and (42) bothE∗ andJ are computed fromF ≡ I +Gradu, while
Jp = Jp(E∗, p), defined through (40), depends also onp, we find that wheneveru belongs to
a set of kinematically admissible deformations which are suitably smooth and which satisfy
the essential boundary condition (30) whilep is also sufficiently smooth, the vanishing of the
first variation of5∗ gives

0= δ5∗ =
∫
B0

{
tr

(
∂W ∗

∂E∗
δE∗

)
+ ∂W

∗

∂J
δJp + (Jp − J )δp

+pδJp − pδJ − ρ0b.δu

}
dV −

∫
∂Bσ0

σ jδujdA. (43)
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Here σ jδuj is summed over the region where the components of the surface traction are
prescribed, whileδuj are the components ofδu written in terms of the basis vectorsgj .
Equation (43) yields the boundary conditions (37) together with the field Equations (28), in
whichS is now expressed as

S = J−2/3

(
∂W ∗

∂E∗
− 1

3tr

[
(2E∗ + I )∂W

∗

∂E∗
)

]
C∗ − JpC∗

)
F T = T (2)F T . (44)

It also yields the conditionJ (= detF ) = Jp(E
∗, p). This validates the use of either of the

functionals (41) or (42) for determining displacements and stresses.
In the incompressible limitη → 0, the stress distribution corresponds toT (2) → (∂W0/

∂E∗) − P ∗C∗, with J → 1 and withP ∗ → 1
3 tr{(∂W ∗/∂E∗)(2E∗ + I )} − p. In the finite

element method, Equation (43) is solved for an appropriate class ofu andp. It is clear that the
formulation is valid for both compressible and incompressible materials, just like the similar
analysis of Refs. [23] and [28] for linear elasticity. In the formulation,η appears explicitly. In
practice,η will become numerically negligible whileχ remains finite, at a value dependent
on the computing machine.

For isotropic materials, the variational principles may be written in terms ofλ∗1 andλ∗2 (or
I ∗1 andI ∗2 ) by replacingE∗ in (41) or (42) much as in subsection 2.3. As in the general aniso-
tropic case, the resulting Euler equations are equivalent to the equations of the corresponding
boundary value problem.

4. Connection with Key’s principle

On specializing our principles to the classical linear theory of elasticity we obtain the func-
tionals

5∗(u, p) =
∫
B0

{−pekk − (p + 1
3Srrij e

∗
ij )

2/2χ + 1
2Sijkle

∗
ij e
∗
kl − ρ0b.u} dV

−
∫
∂Bσ0

σ juj dA (45)

for anisotropic materials [See Appendix A for the above notations] and

5∗ =
∫
B0

{µe∗ij e∗ij − pekk − 1
2χ
−1p2− ρ0b.u} dV −

∫
∂Bσ0

σ juj dA (46)

for isotropic materials.
The above principles are similar to that of Key’s principle [23], in the case of an isothermal

deformation.

5. Numerical examples

The formulation above is currently being implemented in the PERFINE [20] finite element
software. Here, to give confidence in the formulation, numerical solution of a one-dimensional
problem is outlined, using a Newton–Raphson method with incremental loading to solve the
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Figure 1. Finite-element representations of an infinite undeformed cylinder.

discrete equations. The formulation is also tested numerically on a few two-dimensional prob-
lems, and will be extended in the future using a modified augmented Lagrangian method re-
cently developed by Shariff [21]. The behaviour of Q1-P0 and the LBB Q2-Q1 two-dimensional
elements is investigated using a neo-Hookean elastic material with strain energy function
given by Blatz [29] (See Appendix B)

W ∗ = E

4(1+ ν){(λ
∗2
1 + λ∗22 + λ∗23 )J

2/3− 3− 2(J − 1)} + 3χ(J − 1− log J )

2(1+ ν) , (47)

whereE is the ground-state Young’s modulus. The Q1-P0 rectangular element consists of
bilinear functions (4 nodes) approximating the displacement, with the pressure taken as con-
stant over the element. The Q2-Q1 rectangular element consists of quadratic functions (8
nodes) approximating the displacement and bilinear functions approximating the pressure.
An element is LBB stable if it satisfies the div-stability [2] condition, otherwise it is unstable.
The two-dimensional problems are computed on an INMOS Transputer with 2MB of RAM.
Double-precision arithmetic is used and the tolerance for the residual of Equation (43) is set
at 10−6× relevant factor.

Figure 2. Comparison of exact displacement with
finite element displacement for incompressible mater-
ial.

Figure 3. Comparison of exact stress with finite
element stress for incompressible material using 5
elements.
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5.1. ONE-DIMENSIONAL TEST PROBLEM: INFLATING AN INFINITELY LONG

THICK-WALLED TUBE WITH AN INTERNAL PRESSURE

This example is a simple test problem for which the results of the proposed formulation can
be compared withexactand previous finite element calculations. Exact and finite element
solutions for incompressible material can be found in Green and Zerna [31, pp. 88–92] and
Oden [32, pp. 321–331], respectively. The internal and external radii of the tube are taken as 1
and 2 units, while the strain energy function (47) is used. Internal pressures as high as 0.211E
are considered, corresponding to strains of order 150%, so that the behaviour falls outside that
capable of being predicted by classical theory. For simplicity, results shown in Figures 2-4
use only 5 linear one-dimensional elements spaced equally, as shown in Figure 1. Sincep is
a measure of stress, it is taken as constant within each element, with value denoted bype. To
permit the reader to check on the results, details of the finite element equations are now given.
Let u1, u2 andR1, R2 be respectively the nodal radial displacements and radial coordinates of
an element. We then have the approximations

I ∗1 = λ∗21 + λ∗22 + λ∗23 = (1+12+ ω2)/(ω1)2/3,

where

1 = 1+ (u2− u1)/(R2− R1), ω = 1+ ū/R̄,
ū = (u1+ u2)/2 and R̄ = (R1+ R2)/2.

Within each element, we determine the value ofJp from I ∗1 andpe by solving numerically the
equation

Jp = 1+ 2(1+ ν)
3χ

(−peJp − µ(1
3I
∗
1J

2/3
p − Jp)). (48)

The nonlinear element stiffness relations then are

π(R2
2 − R2

1)

(
(−1)NA

L
+ B

2R̄

)
= f N, N = 1,2,

together with

ω1 = Jp,
whereL = R2 − R1, J = ω1, µ = E/(2(1+ ν)), wheref N are the elemental loads and
where

A = µJ 2/3
p

(
1

J 2/3
− ωI

∗
1

3J

)
+ pω, B = µJ 2/3

p

(
ω

J 2/3
− 1I

∗
1

3J

)
+ p1.

The global nonlinear stiffness equations are solved using a Newton–Raphson method together
with 4 steps of incremental loading. From the graphs illustrated in Figures 2–3 it can be seen
that our solution agrees well with the theoretical solution [30]. Note that the theoretical (exact)
solution requires numerical determination of a parameterc from the equation

internal pressure= 1
6E

{
log(1+ c)+ c

1+ c − log(4+ c)− c

4+ c + log 4

}
,
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Figure 4. Comparison of our Principle with the Principle of Stationary Potential Energy.

Figure 5. Plane strain problem of inflating an infinitely long circular tube by an internal pressure 0·211E.
Deformed and undeformed configuration. Q2-Q1 elements.

and the displacementu atR = 1 (say) is given byu = √1+ c − 1.
The number of iterations required forν = 0·499, 0·4999, 0·49999, 0·499999 and 0·5

are identical. For smallerν, the number of iterations remains about the same. No numerical
difficulties were encountered for 06 ν 6 0·5. When our solution is compared (see Figure 4),
for smaller values ofν (i.e. ν = 0 and ν= 0·3), with a solution obtained using the standard
principle of stationary potential energy, the solutions agree completely to four significant
figures.

We also compare the one-dimensional results to the equivalent two-dimensional plane
strain results using six Q2-Q1 elements (see Figure 5). We note that the results are similar
to those using 5 one-dimensional elements and are indicated in Figure 5.
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5.2. TWO-DIMENSIONAL PROBLEMS

We investigate the performances of the Q1-P0, the eight-noded ‘serendipity’ Q2-Q1 and the
Q1 (based on the standard displacement model) elements on plane strain and axisymmetric
problems of bonded elastic mounts. The problems concern flat deformable blocks bonded
between two parallel rigid end-plates. The plane strain problem concerns a rectangular strip
of infinite breadth whereas the axisymmetric problem concerns a circular disc. The mounts
are subjected to tension and compression. The strain energy used in the calculation is of the
form given in Equation (47). The solution for the Q1 element (associated with the standard
displacement model) is obtained from the parallel element software developed by Shariff [32],
where a nonlinear Jacobi preconditioned conjugate gradient method is used to solve the system
of nonlinear equations. In the case of the Q1-P0 and Q2-Q1 elements the system of nonlinear
equations is solved via the Newton–Raphson method. In most calculations, ten increments are
used and convergence generally occurs after two iterations per increment.

5.3. PLANE-STRAIN TENSION

Both faces of the rigid block are displaced to give symmetry, so that a mesh need cover only
a quarter of the block. This is an example of an inhomogeneous test problem. Figures 6 and 7
depict the deformations and the Cauchy stress for various compressibility moduli. The figures
indicate severe stress inhomogeneities near the bonded edge for both Q1-P0 and Q2-Q1 ele-
ments. Using a different formulation, Miehe [11] observes similar behaviour for the Kirchhoff
stress. In Figure 8 the convergence as the number of elements is increased is depicted; it
shows the scale forceF/E for the axial stretch̄λ2 = 3, plotted against the number of mesh
elements in a quarter of the block. The force is calculated using a variational equation similar
to Equation (43) not from the stress calculated at the bonded surface, which is discontinuous.
F is an integral quantity, which characterizes the whole system. In the compressible case,
the results for the axial force are nearly independent of the number of elements. However,
in the case of nearly incompressible and incompressible materials, the Q2-Q1 element per-
formed better in the sense thatF/E for the Q2-Q1 element approaches a limit using fewer
elements. We should, however, note that the Q2-Q1 element has more degrees of freedom
than either the Q1-P0 or Q1 elements. The Q1 element solution exhibited an extreme locking
phenomenon for near-incompressibility. Corresponding results are not plotted. For moderate
values ofλ̄2 − 1, Shariff [33] has shown analytically that the value ofF/E obtained by a
finite element displacement model is an upper bound for the actual force; Figure 8 seems to
indicate a similar behaviour, although no rigorous analyses have been made to validate this
behaviour, using the proposed formulation. The formulation proposed by Miehe [11] also
indicates such behaviour. Figure 8 indicates that the tensile force for a compressible material
exceeds the tensile force for an incompressible (or nearly incompressible) material. Initially
this result was not expected; Miehe [11] had shown otherwise, using Ogden’s [22] material.
This seemingly odd result is due to the Blatz material, not to the finite element formulation,
as explained by Shariff [10].

5.4. PLANE STRAIN COMPRESSION AND AXISYMMETRIC DEFORMATION

The behaviour of the finite element solutions for plane strain compression and axisymmetric
deformation is similar to that of plane strain tension. Hence we shall not depict the results.
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Figure 6. Plane strain tension test: Q2-Q1 element. Deformed configuration and a component of the Cauchy stress
T22, at axial stretch̄λ2 = 3 for various values of Poisson’s ratio.

However, for thin blocks the volume change for nearly incompressible material under com-
pression can be significant. Volume changes per unit undeformed volume are calculated and
it is found that the volume change increases withs (the ratio of one loaded area to the cor-
responding force-free undeformed area), as expected [33]. We also observed that for the case
of axisymmetric deformation, fors = 2·39,E = 17·5 kg andν = 0·49971 (these values are
those obtained by Gent and Lindley [34] for soft gum rubber vulcanizate in their experiment),
the volume change for both types of element is−0·5584× 10−2 and this is an order of mag-
nitude higher thanµ/χ = 0·5795× 10−3; this indicates that the proposed formulation is also
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Figure 7. Plane strain tension test: Q1-P0 element. Deformed configuration and a component of the Cauchy stress
T22, at axial stretch̄λ2 = 3 for various values of Poisson’s ratio.

valid for moderate volume changes unlike some previous formulations where an assumption
of small volume change (of orderµ/χ) is required for nearly incompressible material.

5.5. SOME REMARKS

For all the above types of elements singular stress fields are mildly detected near the bonded
edges although they are not clearly shown in Figures 6 and 7. The magnitude of the gradients
of the stresses increases sharply just adjacent to the bonded edges. However, when the number
of elements is increased near the bonded edges singular stress fields are more significantly
displayed there. The use of special singular elements could give a better picture of the stress
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Figure 8. Plane strain tension test: Convergence of different elements.

fields near the bonded edges. We note that we found no evidence of oscillatory stress be-
haviour using the above types of elements and this is clearly indicated in Figures 6 and 7.
We also note that in the present paper we have used the Newton–Raphson (with incremental
loading) method to obtain the solutions. This method is not suitable for calculating solutions
for unstable problems; an example of an effective method for unstable problems is a modified
Riks method [36]. Nevertheless, we found that, for example, in axisymmetric compression,
the Q1-P0 elements deformed unreasonably [10] near the bonded edges forL/2H = 2·39 and
L/2H = 2·15 at 15% (and higher) and 17·5 % (and higher) compressions, respectively. This
could indicate the possibility of surface (or global) instabilities for the compression problem.

6. Conclusion

Variational principles have been developed which permit the description of the behaviour
of nonlinear deformations of compressible and incompressible elastic solids (which need
not be isotropic). The principles are general in the sense that they permit use of a general
form of strain energy function. The numerical examples using various types of elements
demonstrate that accurate results can be obtained for the analysis of compressible, slightly
compressible and incompressible materials. The principle may be regarded as an extension of
Key’s principle to nonlinear elasticity.
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Appendix A

The linearisation of Equations (6) and (7) should be consistent with the linear elastic relations

σij = Cijklekl = Cijkle∗kl + 1
3Cijkkerr , (A1)

in which e∗ij = eij − 1
3 ekkδij are the components of deviatoric strain, whileσij and eij are the cartesian

coordinates of Cauchy stress and infinitesimal strain respectively. Additionally,Cijkl are the classical elastic
coefficients for anisotropic hyperelastic materials andδij is the Kronecker delta. Within linear theory, we have
the approximations

E∗ij ≈ e∗ij , J − 1≈ err . (A2)

Since (A1) shows that the hydrostatic mean stress is given by

−p = 1
3σii = 1

3Ciikle
∗
kl + 1

9Ciirrekk, (A3)

it is clear from (A3) that in the incompressible limit (ekk → 0) Ciirr becomes infinite in such a way that the
productCiirrekk remains finite, but indeterminate. Let

χ̄ = 1
9Ciirr . (A4)

The behaviour as̄χ →∞ is clarified by considering a class of elastic coefficients that can be defined as follows

Cijkl = Sijkl + χ̄δij δkl , (A5)

whereSijkl do not become indefinitely large asχ̄ → ∞. From (A4) and (A5) it is clear thatSiirr = 0 and that
(A3) becomes

1
3σii = 1

3Siikle
∗
kl + χ̄err , (A6)

while (A1) becomes

σij = Sijkle∗kl + (1
3Sijkk + χδij )err . (A7)

In linearisation of (6) and (7), we define

Mijkl = ∂2W∗
∂E∗ij ∂E∗kl

(0,1) = Mklij , Nij = ∂2W∗
∂E∗ij ∂J

(0, 1), χ = ∂W∗
∂J2

(0,1)

so yielding

P ∗ ≈ −(χ − 1
3Npp)err + (1

3Mppkl −Nkl)e∗kl , (A8)

σij ≈ T (2)ij
≈ {Mijkl + (Nkl − 1

3Mppkl)δij }e∗kl + {Nij − 1
3Nppδij + χδij }err ,

after use of Equations (10) and (11). Agreement with (A6) then requires thatχ̄ = χ andSiikl = 3Nkl , while
consistency with (A7) arising from classical elasticity requires the further conditions

Npp = 0, Mijkl = Sijkl . (A9)
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Thus

∂2W∗
∂E∗

ij
∂E∗

kl

(0,1) = Cijkl − χδij δkl , (A10)

with

3∑
k=1

∂2W∗
∂E∗

kk
∂E∗

ij

(0,1) = 3
∂2W∗
∂J∂E∗

ij

(0,1),
3∑

p=1

∂W∗
∂J∂E∗pp

(0,1) = 0. (A11)

Assuming that the unstrained state is stress-free, the stress-strain relation corresponding to strain energy function
W∗(E∗, J ) then has the linearisation

σrs = ∂2W∗
∂E∗rs∂E∗pq

(0,1)e∗pq +
∂2W∗
∂J∂E∗rs

(0, 1)ekk + χekkδrs . (A12)

(This decomposition (A5) ofCijkl , in which the bulk modulus appears explicitly, seems not to have appeared

earlier in the literature).

Appendix B

For some specific forms ofW(E) previously proposed, the equivalent expressionW∗(E∗, J ) and consequent
forms for (17)2 relatingp, J andE∗ are given below.

Using the decomposition

W∗(E∗, J ) = φ(λ∗1, λ∗2, λ∗3, J )+ χh(J ) (B1)

for isotropic materials, Ogden [22] takes

φ = φ0(λ
∗
1, λ
∗
2)+ (J − 1)φ1(λ

∗
1, λ
∗
2), λ∗3 = (λ∗1λ∗2)−1 (B2)

when dilatation is not restricted to O(η) while, in [35], he uses

φ =
∑
n

µn

αn
{(λ∗αn1 + λ∗αn2 + λ∗αn3 )Jαn/3− 3− αn log J }. (B3)

The exponentsαn and termsµn are real material constants, chosen to characterise rubberlike materials.
Blatz [29] proposed the form

φ = 1
2µ(I1− 3)− µ(J − 1) = 1

2µ{(λ∗21 + λ∗22 + λ∗23 )J
2/3− 3} − µ(J − 1). (B4)

Forh(J ), Ogden [22, 35] uses

h = 1
9{log J + 1

9(J
−9 − 1)} giving

∂h

∂J
= J9− 1

9J10
, (B5)

while Blatz [29] uses

h = 3(J − 1− log J )

2(1+ ν) giving
∂h

∂J
= 3(1− J−1)

2(1+ ν) . (B6)

Consequently, using (B2) and (B5) as in [22] gives

−p = ∂W∗
∂J
= φ1(λ

∗
1, λ
∗
2)+ χ

J9 − 1

9J10
,
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so that

J − 1= −9η

µ

J10

1+ J + J2 + · · · + J8
{p + φ1(λ

∗
1, λ
∗
2)}. (B7)

Similarly, using (B3) and (B6) as in [35] yields

J − 1 = −9η

µ

J10

1+ J + J2 + . . .+ J8

×
[
p + 1

3

∑
n

µn

{
(λ
∗αn
1 + λ∗αn2 + λ∗αn3 )J−1+αn/3− 3

J

}]
, (B8)

while using (B4) and (B6) as in [29] gives

J − 1= 2
3(1+ ν)η{(1− p/µ)J − 1

3I1}. (B9)

Solution of any of (B7)–(B9) gives the corresponding function

J = Jp(λ∗1, λ∗2, p).

Equation (B9) has been used for the computations in Section 5.
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